DK Photonics' Blog is to introduce fiber optical passive components.we provide many features, application and description of them in detail for all of you. 

Contact Us

High power isolator | Pump Combiner | DK Phtonics

DK Photonics supply fiber optic components such as PM Coupler,High Power Isolator,PM Switch,PM Circulator,PM isolator,CWDM,PLC SPlitter,Patch-cord,Pump Combiner,Polarization Beam Combiners/Splitters

Know the Difference between CWDM and DWDM

A WDM (Wavelength Division Multiplexing) is a system that uses a multiplexing (at the transmitter) and a demultiplexer (at the receiver) for the completion of the process and transmission of the signals.

The WDM is divided into three types (WDM, CWDM and DWDM) on the basis of wavelength difference among the three. The article discusses the main differences among CWDM and DWDM.

CWDM stands for Coarse Wavelength Division Multiplexing, and DWDM is the acronym for Dense Wavelength Division Multiplexing. Whether DWDM or CWDM, both are the types of WDM mechanism and have an array of differencess.

Let’s get acquainted with the chief difference between CWDM and DWDM:

  • The Coarse WDM has less than 8 active wavelengths per optical fiber whereas the DWDM has more than 8 active wavelengths per optical fiber.
  • The CWDM has lower capacity strength and hence is low in costs; conversely the DWDM possesses high capacity –this leads to an augmented price which is worth its qualities.
  • When it comes to the difference between the distance of the two, the CWDM has short range communication because the wavelength is not amplified, and DWDM has long range communication.
  • CWDM Mux and Demux systems are developed to be used in multiplexing multiple CWDM channels into one or two fibers.
  • Another major difference is that DWDM systems are made for longer haul transmittal, by keeping the wavelengths closely packed. Also, a DWDM device can transmit more data over long distances and to a significantly larger run of cable with lesser interference than a comparable CWDM system which has a shorter haul transmittal.
  • Furthermore, the Dense Wavelength Division Multiplying systems are capable to fit more than forty different data streams in the amount akin to that of fiber used for two data streams in a CWDM system.

Apart from all the difference there is one more and that is wavelength drift is possible in CWDM, but when it comes to the DWDM –precision lasers are needed to keep channels on the target.

Beyond being different from each other –these systems play different roles in the effective transfer of the signals, and thereby both are important enough.

Posted 375 weeks ago

Know the Difference between CWDM and DWDM

Know the Difference between CWDM and DWDM

A WDM (Wavelength Division Multiplexing) is a system that uses a multiplexing (at the transmitter) and a demultiplexer (at the receiver) for the completion of the process and transmission of the signals.

The WDM is divided into three types (WDM, CWDM and DWDM) on the basis of wavelength difference among the three. The article discusses the main differences among CWDM and DWDM.

CWDM stands for…

View On WordPress

Posted 375 weeks ago

Know Wave Division Multiplexing & its Working

The world knows that the physical fiber optic cabling can be a lot expensive when it comes implementing for every service separately; but this expense can be made worthy by capacity expansion using a Wave Division Multiplexing also known as WDM.

Wave Division Multiplexing technology was evolved to expand aptitude of networks that a single fiber provides. It helps because a WDM system employs a multiplexer solution at the transmitter that combines several wavelengths in concert; also in this entire process, each carries sundry signal and at the receiver –a de-multiplexer helps in splitting them apart. Both Mux and Demux are passive and thereby require no power supply.

Types of WDM

Currently there are many kinds of standardized WDM in existence. The types / kinds of Wave Division Multiplexing are:

  • General WDM (that may include 980/1550 WDM and 1310/1550 WDM).
  • CWDM (such as CWDM Mux and Demux module and CWDM OADM module).
  • DWDM (including 50GHz, 100GHz, 200GHz DWDM mux/demux module and DWDM OADM module).

How WDM works?

The operating principle of WDM is easy and understandable. Wave Division Multiplexing is akin to the prism in the operating principle; as a prism separates white light into seven different colored rays, similarly a WDM system uses a multiplexer at the transmitter to join different signals together, and has a demultiplexer at the receiver end for splitting the signals apart. All you need is a right type of fiber optic cable, and it is possible to have a WDM device that can do both simultaneously, and can act as an optical add / drop multiplexer.

The first WDM systems (which were demonstrated with optical fiber in the early 80s) combined only two signals; however, modern systems can handle up to 160 signals. In short, WDM systems can expand the capacity of the network while accommodating many generations of technology development in optical infrastructure without having to revamp the backbone network; this quality plays in its popularity with telecommunications companies.

Posted 376 weeks ago

Know Wave Division Multiplexing & its Working

Know Wave Division Multiplexing & its Working

The world knows that the physical fiber optic cabling can be a lot expensive when it comes implementing for every service separately; but this expense can be made worthy by capacity expansion using a Wave Division Multiplexing also known as WDM.

Wave Division Multiplexing technology was evolved to expand aptitude of networks that a single fiber provides. It helps because a WDM system employs a…

View On WordPress

Posted 376 weeks ago

Data Bottleneck Solutions for your Business with Compact CWDM Mux and Demux

Data Bottleneck Solutions for your Business with Compact CWDM Mux and Demux

Communication networks are vulnerable to data congestion. This limits the end users from accessing certain links including mobile radio towers. The problem has led to management of dedicated links by a large number of wireless carriers through the optical fiber network connection.

Depending on the requirement standards the service provider is expected to comply, some even go to the extent of…

View On WordPress

Posted 378 weeks ago

Data Bottleneck Solutions for your Business with Compact CWDM Mux and Demux

Communication networks are vulnerable to data congestion. This limits the end users from accessing certain links including mobile radio towers. The problem has led to management of dedicated links by a large number of wireless carriers through the optical fiber network connection.

Depending on the requirement standards the service provider is expected to comply, some even go to the extent of claiming additional dedicated strands which give access and core meshes to the mobile tower sites.  This trend depletes the number of available fiber strands denying new service providers access to mobile towers.

Thanks to the art of technology which has introduced data bottleneck solution to businesses. The compact CWDM multiplexer allows fiber capacity enhancement without the need to increase the number of fiber strands. This ensures easy communication and connectivity to mobile towers by giving quick access without bugs.

Features

  • High channel isolation
  • Mini size
  • High insertion loss
  • Epoxy-free optical path
  • Large bandwidth

Applications

  • Mobile phone applications
  • WDM network
  • Access network
  • Tele-communication
  • Fiber optic amplifier

How it works

Compact CWDM multiplexer works by either extracting or inaugurating several signals which are broadcasted through different fiber wavelengths to efficient create more different channels. A MUX conglomerates individual light channels to the fiber at the sending end of the data link.

On arrival, a demultiplexer (DEMUX) applies a similar optical conformation in a reverse direction, propagating via the device. The DEMUX optical filter singles out the incoming wavelengths and pairs each channel separately with fiber. This increases the number of channels transmitted through the fiber.

As the demand for more subscribers continues to grow, the CWDM scales the supply of additional bandwidth by handling bottlenecks without substantial equipment modification. According to the IEEE standards. CWDM is compact and has the capability of withstanding outside plant (OSP) environmental conditions. This allows deployment of uncooled and unheated equipment and cabinets.

Advantages

Saves money

CWDM helps access network operators lower their costs by providing quality connections to their users without the need of investing on more fiber links.

High quality

Compact CWDM is designed using modern technology and complies with IEEE standards making service providers meet the global communication standards. Besides, the device has the capability of withstanding outside the plant environmental conditions giving providers favorable installation conditions.

Reduces data bugs

Networks are prone to bottlenecks. However, the device scales additional bandwidth without the need of substantial modification of the device. This ensures quick access to links despite the increase in the number of subscribers. This has enabled users to enjoy high-speed internet, telephony services, and on-demand videos without limited access.

Before making use of this new technology, access network operators must satisfy the following requirements.

  1. Bandwidth of up to 10Gps for each first-time backhaul link
  2. Facility to storing stable legacy fiber connections of between 15510nm or 1310nm
  3. Typical spans of up to 80km
  4. Uncomplicated operations which are reliable
  5. Wireless carrier segregation bandwidth
  6. Packaged and long-lasting environmental constraints for installation
Posted 378 weeks ago

Selection Guideline for Polarization Maintaining Optical Circulator

There are very many passive components involved in fiber optical networks and an optical circulator is among the top options. These components help in signal delivery without any failure thus remain to be very important. When used, the optical circulator will direct the signals between different ports but maintaining a single direction. There will be no chances of the signal going in a different direction that was not intended.

Two-way situations apply

However, that does not make it a one-direction device only. There are rare situations where you can have the circulator used in a two-way situation. When there is an optical signal sent by the circulator in two different directions, the fiber is usually one. You will have the circulator fixed on the two ends of the fiber and will function by adding a signal in one end while removing from the opposite end.

Whenever you are choosing a Polarization Maintaining Optical Circulator to use, there are very many things that must be put into serious consideration. That will be the benchmark on which your choices will be based upon. Features must be one of the things that you look out for in an ideal optical circulator. The good thing is that such a circulator comes loaded with more features to make your experience remarkable.

Consider different applications

The circulator comes with two main high-power options to choose from. You can go for either 1550nm or 1064nm depending on your needs. The other standout features for Polarization Maintaining Optical Circulator include epoxy-free optical path and compact inline package. There are additional features that as well make the circulator a unique choice compared to other alternatives available.

The other thing to look at includes applications which play a key role in the functioning of an optical circulator. Main applications that you should pay attention to are bidirectional pumping, fiber sensors, add-drop multiplexing, bidirectional signal transmission systems as well as coupling inline chromatic dispersion compensation devices.

With these applications, you are sure that your circulator will give out an optimal performance. You can have a Polarization Maintaining Optical Circulator used in multiple optical settings thus it will offer you limitless options. That is because they are unidirectional and non-reciprocating while their availability as three-port makes the circulator even more suitable. Do you know that it’s possible to use optical circulators in communication systems that are more advanced? Well, that is yet another of their biggest advantage over other types of circulators.

Get optimal performance

That is made possible by the fact that optical circulators come with a very small insertion loss while their isolation levels are very high. When used in advanced systems of communication, the circulators will come as any of the common applications. The result you get from using Polarization Maintaining Optical Circulator will depend largely on how you have chosen to use it.  If you make your decision well, the result will be good but if not then you will get a different result. It will all depend on your choices.

Posted 378 weeks ago
<p><a href="http://dkphotonics.wordpress.com/2017/03/30/selection-guideline-for-polarization-maintaining-optical-circulator" target="_blank">Selection Guideline for Polarization Maintaining Optical Circulator</a></p>

<p>There are very many passive components involved in fiber optical networks and an optical circulator is among the top options.</p>

Selection Guideline for Polarization Maintaining Optical Circulator

There are very many passive components involved in fiber optical networks and an optical circulator is among the top options.

Posted 378 weeks ago
tumblr photo tumblr photo tumblr photo tumblr photo
Posted 379 weeks ago

Get Acquainted With Athermal AWG DWDM Module & its Astounding Applications

Get Acquainted With Athermal AWG DWDM Module & its Astounding Applications

The element of a succession of high performance products that are based on the technology called silica-on-silicon planar and an exclusive athermal packaging design demanding zero software, electrical power, or temperature control for an entirely passive DWDM solution are referred to as Athermal Arrayed Waveguide Grating Dense Wavelength Division Mux/Demultiplexer which is also known as Athermal…

View On WordPress

Posted 380 weeks ago
 

Make a free website with Yola